If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+15=16
We move all terms to the left:
4y^2+15-(16)=0
We add all the numbers together, and all the variables
4y^2-1=0
a = 4; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·4·(-1)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*4}=\frac{-4}{8} =-1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*4}=\frac{4}{8} =1/2 $
| 14=q-5 | | 15+8a=(4a+6) | | -2x+3(x-4)=3 | | 8(1+7v)+2=-39+7v | | w-1/3=2/5 | | 6x+4=−2x | | -3+7m-2m=1+4m | | (24/c)-18c=-24 | | 9b=–6+6b | | (2x+26)=(4x–12) | | −36=9u | | (4x–12)=(2x+26) | | 4(2x+4)-4=4x-4 | | 5x^2-29=1 | | -21+6x=-3(7x-2) | | -x+⅕+5x=41/5 | | –3y−8=–7y | | 4x-6+3x+18=180 | | -2+2v=1+3v | | −36= 9u9u | | 10x^2-1=99 | | x-5-2(2-x)=-3 | | 3=1/3b+ | | 2=g-15 | | 5x=√5 | | 2(8x-3)=6x-6+10x | | 10y-4=6y-8 | | -11=-6-(x+5) | | -7(x+4)=-7-4x | | –6c−10=–5c | | -2(3x-4)=-8x-4+2x-4 | | (24/x)-18x=0 |